
Algolympics 2016

Solution Sketches



Problem E: Noel

● Easy!
○ Make all lowercase (or all uppercase).
○ Remove duplicates.
○ Compare.



Problem A: Gag Olympics

● Also easy! Just careful implementation.
● Be careful! Exactly copy the (awesome) ASCII art.



Problem B: The Tale of the Extremely Bored Fairies

● Translation of problem: Given a and n, find the 
unique x such that (a+1)⊕(a+2)⊕...⊕(a+n)⊕x = 0

● ⊕ denotes bitwise XOR.
● Properties of ⊕:

○ Associative, commutative.
○ Has identity 0.
○ The inverse of every x is itself, i.e., x ⊕ x = 0.



Problem B: The Tale of the Extremely Bored Fairies

● Thus,
○ x ⊕ y = 0 ↔
○ (x ⊕ y) ⊕ y = 0 ⊕ y ↔
○ x ⊕ (y ⊕ y) = y ↔
○ x ⊕ 0 = y ↔
○ x = y 

● Hence: the answer is x = (a+1)⊕(a+2)⊕...⊕(a+n)



Problem B: The Tale of the Extremely Bored Fairies

● However, we can’t compute it with a simple loop 
since n is large!

● Now, at this point, it’s already possible to compute 
(a+1)⊕(a+2)⊕...⊕(a+n) quickly by analyzing each bit 
separately, but that’s quite complicated. I will show 
a better way.



Problem B: The Tale of the Extremely Bored Fairies

● Thus,
○ (a+1)⊕...⊕(a+n) =
○ (a+1)⊕...⊕(a+n) ⊕ (0⊕1⊕...⊕a) ⊕ (0⊕1⊕...⊕a) =
○ (0⊕1⊕...⊕(a+n)) ⊕ (0⊕1⊕...⊕a) =

● Thus, we want to compute 0⊕1⊕...⊕n given n.



Problem B: The Tale of the Extremely Bored Fairies

● Insight: (2m) ⊕ (2m + 1) = 1.
○ Proof: All bits cancel out except the last one.

● Insight: (4m) ⊕ (4m + 1) ⊕ (4m + 2) ⊕ (4m + 3) = 0
○ Proof: ((4m)⊕(4m+1)) ⊕ ((4m+2)⊕(4m+3)) = 1 ⊕ 1 = 0

● Thus, every block of four numbers disappear! We 
only need to consider the last three elements (or 
less)!

● O(1).



Problem F: Print F

● Problem: Find the sum of squares of proper 
divisors of n := 2p-1(2p - 1) for p = 74207281, mod m.

● It’s easier to sum for all divisors and just subtract 
n2 in the end.



Problem F: Print F

● Important: 2p - 1 is prime (given in statement). 
Hence, the divisors are all either 2i or 2i(2p - 1) for 
some 0 ≤ i < p.

● We now want:



Problem F: Print F



Problem F: Print F

● Hence, answer:
● Reduce mod m. Tricky! Especially if m is divisible 

by 3, since 3 is not invertible mod m.

● Use:

● Be careful with overflow!



Problem D: Colored Tile Puzzle

● This is really just an elaborate BFS problem!
● Just keep track of your smell as part of your state.
● No need to worry about the transition being slow 

(especially for a long sequence of V’s) since each 
V is only visited a constant number of times.

● Tricky case: PVVVVY. This allows you to get lemon 
smell by using Y. So don’t just consider Y as a wall!



Problem I: Inside Down and Upside Out

● Another implementation problem.
● One can represent the setup with a 3D matrix, 

then simulate each letter carefully.
● O(LWHS) time.



Problem I: Inside Down and Upside Out

● This can also be solved in O(LW log (L + W) + S) 
time!
○ Left as exercise



Problem H: Timbre

● Problem: Insert into BST and find the final tree.
● You can’t simulate since that takes O(n2)! Need to 

find something faster.



Problem H: Timbre

● Insight: We know the inorder traversal: 1, 2, …, n
● Insight: The parent of x is either:

○ the nearest y < x that is inserted earlier, or
○ the nearest y > x that is inserted earlier.
○ Which one among these two? The one that’s inserted 

later!

● Hence, we can compute parents. After computing 
parents, a BFS/DFS at the end gives us the tree.



Problem H: Timbre

● Now, we need to solve the subproblem:
○ For each x, find the nearest y < x such that t[y] < t[x].

■ Here, t[x] denotes insertion time.

● We can use segment tree + binary search.
○ O(n log2 n)
○ O(n log n) by incorporating the binary search with the 

segment tree



Problem H: Timbre

● We can also solve it in O(n) by using a left-right 
sweep and a stack! Just keep track of the “peaks” 
with the stack.
○ Google “stock span problem” for more details.

● O(n) is optimal.



Problem C: Godlike Multiplication

● Multiplication without carrying… just like 
polynomial multiplication!

● Solution: fast polynomial multiplication using Fast 
Fourier Transform (FFT).

● Gotcha: Be careful with some “carries” because of 
the weird specifics of the described multiplication 
method.



Problem C: Godlike Multiplication

● O(d log d) where d is the total # of digits



Problem G: GGVV

● Range query: Given subinterval, follow 
instructions.

● Range update: Flip two kinds of characters
● Too slow to simulate all!
● Segment tree with lazy propagation.
● We need to discuss the details of the segment 

tree a bit.



Problem G: GGVV

● For each sequence, we keep track of the 
displacement assuming initial direction is north.
○ Other directions can be determined from this.

● We also keep track of the results assuming certain 
pairs of letters are flipped. (Four total.) On range 
updates, we simply rearrange the results.

● O(n + d log n)



Thank you!

Judges:

● Kevin Charles Atienza
● Jared Guissmo Asuncion
● Karl Ezra Pilario


